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Quantum Mechanics

In classical mechanics, determining an object’s location can be precise.

In quantum mechanics, we can only know the probability that a
particle can be located somewhere.

We describe this probability density with a wave function.

P(r ∈ A) =

∫
r∈A

Ψ(r)Ψ∗(r)dr

This wave function is similar to that of a violin string or drum
membrane – the amplitude must be zero along the boundary of the
domain.

This property restricts the possible energy values to discrete values.1

() 1Casey Blood. A Primer on Quantum Mechanics and Its Interpretations. Tech. rep. Rutgers University. url:
https://arxiv.org/ftp/arxiv/papers/1001/1001.3080.pdf.
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Shrödinger Equation

For stationary particles, these wave functions have to obey certain rules by
satisfying the time-independent Shrödinger Equation:

ĤΨn(r) =
[
− ~2

2M
∆ + V(r)

]
Ψn(r) = EnΨn(r)

Where V(r) is the potential energy. For a free stationary particle in some
open domain D , we have:

V(r) =

{
0 r ∈ D
∞ r 6∈ D
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Shrödinger Equation

The time-independent Shrödinger Equation:

ĤΨn(r) =
[
− ~2

2M
∆ + V(r)

]
Ψn(r) = EnΨn(r)

is equivalent to the familiar Helmholtz equation with Dirichlet boundary
conditions:

(∆ + k2)Ψn(r) = 0, r ∈ D

Ψn(r) = 0, r ∈ ∂D
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Obtaining the Helmholtz Equation from the Shrödinger
Equation

ĤΨn(r) =
[
− ~2

2M
∆ + V(r)

]
Ψn(r) = EnΨn(r)

We set V(r) = 0 in the domain. Giving us:

ĤΨn(r) =
[
− ~2

2M
∆
]
Ψn(r) = EnΨn(r) =⇒

~2

2M
∆Ψn(r) + EnΨn(r) = 0 =⇒

(∆ +
2MEn

~2
)Ψn(r) = 0, r ∈ D

And we set 2MEn
~2 = k2n

=⇒ (∆ + k2)Ψn(r) = 0, r ∈ D
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Expansion Method for Solving the Helmholtz Equation2

This method approximates Ψn by
fitting the domain D in a rectangle.

Ψn(r) ≈ 0 outside of the domain D .

We do this by properly picking a
large constant V0 which simulates
setting V(r) =∞ in region II.

Ṽ (r) =


0 r ∈ I = D
V0 r ∈ II
∞ r ∈ III

() 2Ioan Kosztin David L. Kaufman and Klaus Schulten. Expansion method for stationary states of quantum billiards.

American Journal of Physics 6. American Association of Physics Teachers, 1999. url:
https://aapt.scitation.org/doi/pdf/10.1119/1.19208?class=pdf9.
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Expansion Method

The solutions for the Helmholtz equation in the rectangular domain:

(∆ + k2)Ψn(r) = 0, r ∈ D

are of the form:

φm(r) = φm1,m2(x1, x2) =

√
2

a1
sin (

π

a1
m1x1)

√
2

a2
sin (

π

a2
m2x2)
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Expansion Method

The solutions for the Helmholtz equation in the rectangular domain:

(∆ + k2)Ψn(r) = 0, r ∈ D

are of the form:

φm(r) = φm1,m2(x1, x2) =

√
2

a1
sin (

π

a1
m1x1)

√
2

a2
sin (

π

a2
m2x2)

And the solution should be a linear combination of these functions:

Ψn(r) =
∑
m

cmφm(r)

With coefficients cm.
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Expansion Method

We determine the coefficients cm by solving the eigenvalue equation:∑
m

(Hnm − Eδnm)cm = 0

and from the the Shrödinger Equation, we evaluate the Laplacian on our
basis functions and obtain H:

Hnm =
π2~2

2M

[
(
m1

a1
)2 + (

m2

a2
)2
]
δnm + V0

∫
II
φn(r)φm(r)d2r

We then obtain the eigenvectors and associated eigenvalues of H.
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3D Plots for Circle Domain - First 12 Energy States
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2D Density Plot for Circle Domain - First 12 Energy States

12 / 25



First 12 Energy States for Quarter-Circle Domain
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First 4 Energy States of Various Triangle Domains
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5th - 8th Energy States of Various Triangle Domains
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First 10 Energy States of Hex, Oct, and Circle Domains
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First 12 Energy States in Wide and Thin Ring Domains
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51st - 54th Energy States of Triangle Domains
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51st - 56th Energy States of Hexagon, Octagon, and Circle
Domains
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51st - 56th Energy States of Ring Domains
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Energy Values
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Energy Values
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Further Research Possibilities

Analyze bifurcation of eigenfunctions and phase transitions of
different domains.3

More spectral analysis of eigenstates through random matrix theory
and possible correlation to the distribution of the zeroes of the
Riemann Zeta function.45

Possible inverse problems, such as determining the shape of the
domain from the eigenvalues.6

() 3Jonathan P. Keating Paul Bourgade. Quantum chaos, random matrix theory, and the Riemann ζ − function. Tech. rep.
University of Bristol, 2010. url: http://www.bourbaphy.fr/keating.pdf.

() 4David L. Kaufman and Schulten, Expansion method for stationary states of quantum billiards.

() 5Paul Bourgade, Quantum chaos, random matrix theory, and the Riemann ζ − function.

() 6Mark Kac. Can One Hear the Shape of a Drum? The American Mathematical Monthly, Vol. 73, No. 4, Part 2: Papers in

Analysis (Apr., 1966), pp. 1-23. Mathematical Association of America, 1966. url:
https://www.math.ucdavis.edu/~hunter/m207b/kac.pdf.
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