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Introduction 

Osteoporosis is a major cause of morbidity and mortality worldwide. It is responsible for 
more than 8.9 million fractures annually [1], affecting 1 in 3 women and 1 in 5 men over the age 
of 50 [2], [3]. Since osteoporosis cannot be reversed, early diagnosis is critical in preventing and 
reducing the debilitating effects of a loss of bone density [4].  

The gold standard for diagnosing osteoporosis is dual-energy x-ray absorptiometry 
(DXA) [4]. This technique uses two x-ray beams of different energies to differentiate soft tissue 
densities from bone mineral density (BMD). DXA-obtained BMD measurements of the femur, 
hip, and lumbar vertebrae are most commonly used to estimate bone fracture risk and diagnose 
osteoporosis [4], [5]. However, whole-body DXA scanners are expensive and only available in 
large cities and healthcare centers [6], [7]. Although portable BMD devices are available, they 
remain costly and are confined to use for peripheral measurements. Since these devices do not 
measure BMD of the femur, hip, or lumbar vertebrae, they are unsuitable for diagnostic use. 
Quantitative ultrasound is one portable BMD technique that attempts to lower costs, but is still 
under development and currently used as a pre-screening tool to identify candidates for DXA 
scanning [8].  

An imaging modality that is relatively low-cost and widespread throughout both 
developed and developing countries is conventional radiography [5]. When radiographic 
scanners were equipped with an intensity calibration device during imaging, the intensities in the 
radiograph were successfully related to standardized mass quantities, a necessity for quantifying 
BMD [6].  

Due to these reasons, conventional radiography offers an alternative to costly and 
inaccessible DXA scanners. Although there exists a motivation to quantify bone density from 
radiographic images, methods to do so are currently undeveloped. To make radiographs suitable 
for quantitative BMD measurements, the soft tissues of the anatomy need to be separated from 
the bone, and the thickness of the bone needs to be accounted for.  

In this study, we developed a preliminary method to quantify bone density using 
radiographs. We employed geometrical modeling of both the cortical bone and the soft tissues of 
a radiograph dataset to account for bone thickness and estimate bone density without interference 
from soft tissues. For validation, we compared bone densities obtained using our method to CT 
density measurements of the same subjects. We also compared the CT density measurements to 
baseline radiograph densities that were obtained without modeling. To quantify our results and 
determine correlation between CT density measurements and the baseline and modeled densities 
obtained from the radiographs, we performed linear regression analysis. This work constitutes 
progress towards a low-cost, widely accessible method for diagnosing osteoporosis that is 
especially needed in developing countries.  
 
 



Methods 
Radiograph Dataset Selection and Backgrounding 

To quantify bone mineral density from radiographs, we applied a second-order soft tissue 
model to estimate tibial and metacarpal bone mineral densities from the radiographs of 15 parrots 
(8 Sun Conures, 7 Quakers). The parrots were imaged with an intensity calibration device 
consisting of six plastic washers whose masses varied linearly. We first subtracted the 
background intensity of each image from the full image, setting the background intensities to 
zero, before constructing a calibration curve that related intensities of the standardized intensity 
calibration device to their mass quantities. Backgrounding, construction of the calibration curve, 
and all further manipulation and modeling of the radiographs were performed in MATLAB 
R2016b (MathWorks, Natick MA).   

 
Region of Interest Selection with Noise Reduction 

The midline of the bottom tibia in each image was fit to a linear equation to align the 
image coordinates with the axis of the tibia (Fig. 1A) and calculate the indices ranging between 
20% and 50% of tibial length (measured with respect to the distal end). This region of the tibia 
closely approximated a cylindrical shape and was used for modeling. With the axis of the tibia 
aligned with image coordinates, the intensity values were recorded by horizontal position. We 
averaged the intensity of each horizontal position in sets of ten vertically adjacent pixels. This 
averaging was performed to reduce the effects of noise in order to generate more representative 
intensity profiles and facilitate modeling.  

 
Soft Tissue Modeling 
From the plotted intensity profiles of each set of measurements (Fig. 1B), the intensities of the 
soft tissues were modeled as quadratic functions and digitally subtracted from the original scan 
of the tibia to create a ‘bone only’ scan (Fig. 1C). The intensities located in the coordinates 
containing the tibia bone itself were neglected during the modeling of the quadratic function, but 
the subtraction was applied to all intensities.  
 
Bone Density Quantification 

The bone density of each parrot was quantified from its bone only scan by modeling each 
tibia as a concentric cylinder with a hollow interior. The two peak intensities observed in each 
bone only intensity profile (Fig. 1D) correspond to the projection of the intensities of the cortical 
bone. These values were averaged and divided by the number of pixels that the intensity sum 
was calculated over, generating a relative density value for each parrot. Eq. 1, derived directly 
from the Pythagorean Theorem, shows the calculation for the total number of pixels that each 
intensity was calculated over (n), where rout is the outer diameter of the cortical bone and rin is 
the inner diameter of the cortical bone.  

𝑛 = 2$𝑟!"#$ − 𝑟%&$  (Eq. 1) 

Each relative density value was converted to a standardized density value using the constructed 
calibration curve.  
 



 
Fig. 1: Intensity profiles of original and bone-only radiograph images of the tibia. The original 
image (A) is shown directly above its intensity profile along the length of the tibia (B), with soft 
tissues modeled in red. Note that each intensity profile curve corresponds to the averaged 
intensities of 10 vertically adjacent pixels for a given horizontal pixel location. The bone-only 
image (C) is the original image with the modeled soft tissue intensities removed. Its intensity 
profile is shown directly below (D).    
 
Validation and Statistical Analysis 

To serve as a baseline for comparison, ‘uncorrected’ density calculations from the same 
radiograph scans were obtained without performing any geometrical modeling or soft tissue 
removal. These calculations were performed on the same tibias, in the same locations (between 
20% and 50% of tibia length measured with respect to the distal end). They followed the same 
procedures as the corrected radiograph intensities for density quantification, with the exception 
that the intensities used for density quantification were taken from the original image with soft 
tissue intensities included, and without accounting for the number of pixels that the intensities 
were taken over. 

Both the uncorrected and corrected radiograph densities were compared to CT 
measurements, which represent the accepted densities. CT scans of the same 15 parrot dataset 
were obtained. Since the CT scans featured the birds in different positions than the radiograph 
scans (and thus could not be correlated to the correct tibia used for the radiograph analysis), CT 
density measurements of both tibias were taken and averaged. These CT measurements were 
taken using Amira (Thermo Scientific, Waltham MS), 3D software used for CT visualization and 
analysis. These measurements were in Hounsfield units (HU), which are linear in scale, and were 
taken and averaged over the same locations as in the radiographs (between 20% and 50% of tibia 
length measured with respect to the distal end) by selecting this region. 

Both the uncorrected and corrected radiograph measurements were independently 
compared to the CT measurements. We performed linear regression analysis of uncorrected 
radiograph measurements vs. CT measurements and corrected radiograph measurements vs. CT 
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measurements to determine R2 values for each relation, and whether a significant correlation 
could be established for each relation. R2 values vary from 0 to 1 and represent the percent of 
variation in the radiograph model that is predicted by the CT measurements, with values closest 
to 1 representing the best fit between the radiograph predictions and the CT measurements. In 
addition, hypothesis testing of the slope of each regression line was performed using a t-test 
(with associated p-values) to test the null hypothesis that the slope is not statistically different 
than zero, using a minimum confidence level of 95%. A slope of zero implies that there is no 
significant linear relationship between the radiograph and CT densities, as a change in CT 
density would not be reflected by a change in radiograph density. A low p-value (p < 0.05) 
suggests that the slope is not zero, and that changes in CT density are associated with changes in 
radiograph density. This is necessary for radiograph densities to be representative of CT 
densities. Finally, the entire process of bone density quantification, validation, and statistical 
analysis was repeated for the leftmost metacarpal in each parrot radiograph of the dataset. 
 
Results 

The uncorrected and corrected tibial densities, plotted against the corresponding CT 
densities for each parrot, are shown in Figures 2 and 3, respectively. For the uncorrected 
radiograph densities, a positive slope was found at the 95% confidence level (p = 0.04) from the 
regression analysis, with an R2 of 0.29 for the regression equation. From this equation, 
uncorrected tibial radiograph density is predicted to equal 2.00 + 0.0032∙(CT density), when CT 
density is reported in HU and radiograph density is reported in standardized intensity calibration 
device units. When modeling was applied to the radiographs, a positive slope was found at a 
higher confidence level of 99.995% (p = 0.0001) from the regression analysis, and R2 improved 
to 0.70 for the regression equation. From this equation, tibial radiograph density is predicted to 
equal 2.32 + 0.0069∙(CT density), when CT density is reported in HU and radiograph density is 
reported in terms of standardized intensity calibration device units.  
 
 

 
Fig. 2: Uncorrected radiograph densities compared to CT densities in the tibias of 15 parrots. 
Linear trendline: y = 0.0032x + 2.00 (p < 0.05, R2 = 0.29). Note that radiograph density units are 
reported in terms of the standardized intensity calibration device, which is linear in scale. 
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Fig. 3: Corrected radiograph densities compared to CT densities in the tibias of the 15 parrots. 
Linear trendline: y = 0.0069x + 2.32 (p < 0.0005, R2 = 0.70).  
 

Figures 4 and 5 show the uncorrected and corrected metacarpal densities, respectively, 
plotted against the corresponding CT densities for each parrot. Results from simple linear 
regression indicate that a non-zero slope could not be found at a 95% confidence level for either 
the uncorrected or corrected radiograph densities. For the uncorrected radiograph densities, 
simple regression analysis resulted in a p-value of 0.3, with an R2 of 0.080. From this analysis, 
uncorrected metacarpal radiograph density is predicted to equal 0.21 + 0.00023∙(CT density), 
when CT density is reported in HU and radiograph density is reported in standardized intensity 
calibration device units. When modeling was applied to the radiographs, simple regression 
analysis resulted in a p-value of 0.2, and R2 improved slightly to 0.14. Based on this analysis, 
metacarpal radiograph density is predicted to equal 7.79 + 0.0054∙(CT density), when CT density 
is reported in HU and radiograph density is reported in terms of standardized intensity calibration 
device units.  

 

 
Fig. 4: Uncorrected radiograph densities compared to CT densities in the metacarpals of 15 
parrots. Linear trendline: y = 0.00023x + 0.21 (NS, R2 = 0.080).  
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Fig. 5: Corrected radiograph densities compared to CT densities in the metacarpals of the 15 
parrots. Linear trendline: y = 0.0054x + 7.79 (NS, R2 = 0.14).  
 
Discussion 

This study is a first attempt to quantify bone density using soft-tissue modeling of 
radiographs. We used intensity calibration and second-order modeling of soft tissues to 
determine the bone densities of radiographs at the tibial and metacarpal sites. Based on the 
comparison of these results to CT-obtained bone densities of each site, a significant correlation 
between the densities from the radiographs and those from CT was found for the tibial site, but 
not the metacarpal site. 

A significant correlation between the bone density derived from the modeled radiographs 
and the CT measurements (accepted densities) was found at the tibial site (R2 = 0.70, p < 0.0005) 
(Fig. 3). Based on this relatively high R2 value, the tibial densities obtained from the modeled 
radiographs are generally representative of the accepted density values. This result also marked a 
significant improvement from the baseline (unmodeled) radiograph densities, which featured a 
weaker correlation (R2 = 0.29, p < 0.05) (Fig. 2). The difference in the two results is due solely 
to soft-tissue modeling, demonstrating its significance in determining the bone density of 
radiographs at the tibia.      

However, a significant correlation between the modeled radiograph and CT densities was 
not found for the metacarpal site (R2 = 0.14, NS) (Fig. 5). Although there was a slight increase in 
R2 when comparing this result to the baseline correlation (R2 = 0.080, NS) (Fig. 4), the 
correlation remained non-significant and the modeled radiograph densities were not 
representative of the CT densities at the metacarpal site. The difference in the significance in 
correlation between the tibial and metacarpal sites is likely due to the differences in geometry 
and surrounding skeletal structure of the two sites. The tibial site is relatively isolated from 
surrounding bones and is also geometrically simple in shape, closely approximating a concentric 
cylinder. In contrast, the metacarpal site features overlapping bones and feathers and has 
irregular geometry that our model may have had trouble accounting for. 

When comparing the tibial site results from our radiograph-based method to results 
obtained from other portable or peripheral BMD quantification devices, the tibial site featured 
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strong correlation to accepted BMD [10]-[13]. These other quantification devices are most likely 
to be used in areas without access to standard equipment, such as DXA scanners, and serve as a 
standard-for-comparison for our radiograph-based technique. In one study, Kim et al. tested the 
association of speed of sound measured by ultrasound densitometry with bone mineral density 
measured by DXA in seven sites throughout the spine, femur, and forearm. They found r values 
ranging from 0.63 to 0.78 (all p < 0.0001), corresponding to R2 values ranging from 0.40 to 0.61 
[10].  

Similarly, Kayalar et al. tested the association of BMD measurements of the calcaneus 
(heel bone) obtained from the DXA Laser Calscan device with T-scores obtained from 
traditional DXA. T-scores are calculated from the measured BMD value, representing the 
number of standard deviations that the BMD value varies from the average BMD of a 25-year-
old of the same sex. The Calscan device is more mobile and less costly when compared to 
traditional DXA, but features relatively low correlation when compared to results from 
traditional DXA scanners, with r = 0.340 (p = 0.001), corresponding to R2 = 0.12 [11].  

Finally, portable DXA scanners that measure the bone density of peripheral sites 
including the forearm and fingers have been compared to traditional DXA measurements of the 
hip and spine. Comparison of the BMD measurements from AccuDXA 2 portable scanner with 
those from traditional DXA resulted in r = 0.61 (p < 0.001) for women, corresponding to R2 = 
0.37, and r = 0.53 (p < 0.001) for men, corresponding to R2 = 0.28 [12]. When compared with T-
scores of the hip using traditional DXA, T-scores of the forearm from the Osteometer-DTX200 
peripheral DXA scanner resulted in r = 0.34 (p < 0.05), corresponding to R2 = 0.12 [13].  

Although all of the correlations presented from these portable or peripheral BMD 
quantification devices were statistically significant, the correlations were often relatively weak. 
The R2 value obtained using BMD measurements of the tibial site after soft-tissue modeling was 
performed surpassed that of the other techniques presented, indicating its potential utility. 
However, there are limitations with this study that may affect the comparison of its results with 
the other methods. Most significantly, we applied our analysis to a parrot dataset rather than a 
human dataset and used CT, rather than DXA, to validate. Differences in the trabecular and 
cortical bone content between humans and parrots may yield different success in quantifying 
BMD in humans with the radiograph-based method. In addition, the BMD measured in the 
parrots consisted almost entirely of cortical bone, while osteoporosis in humans primarily causes 
a decrease in the BMD of trabecular bone. Using CT to validate our method also limits the utility 
of our results, as the radiograph-derived BMD results would ideally be put into the context of 
DXA-obtained measurements since current diagnostic criteria for osteoporosis have been 
developed from DXA. Finally, by quantifying BMD from a single tibia from each radiograph, 
this study assumed that both the left and right tibia had approximately the same bone density, 
which may introduce small inaccuracies into our results.         

Despite these limitations, this study was able to demonstrate that intensity calibration and 
soft-tissue modeling of radiographs can yield representative bone density measurements for an 
isolated, geometrically simple site (tibia) in a research context. This study also demonstrates the 
significance of soft-tissue modeling in accurately determining the relative intensity of embedded 
structures. This may have applications in areas such as oncology, as it could potentially be used 
to enhance bone tumor visualization using conventional radiography. In addition, by 
demonstrating that a technique based on conventional radiography can be used to quantify bone 
density, this study offers a potential method to diagnose osteoporosis in developing countries 
where DXA and CT are largely inaccessible. An “add-on” system consisting of the intensity 
calibration device and the software capable of quantifying bone density using soft-tissue 



modeling could be eventually be supplied to facilities that own a conventional x-ray scanner, 
which are much more widespread than either CT or DXA scanners.  

Before this radiograph-based system can be adapted clinically, there are several key 
developments that first need to occur. Future work includes applying the system to a human 
dataset and validating its results with DXA-obtained bone densities. In addition, the technique 
needs to be automated (e.g., user-selection of soft tissue boundaries needs to be removed) and 
converted into a programming language that is compatible with conventional x-ray scanners. 
Finally, algorithms need to be developed to better detect and account for overlap when 
quantifying bone. Successfully introducing these developments would result in a low-cost, 
widely accessible method to diagnose osteoporosis in developing countries where osteoporosis 
often goes undiagnosed, resulting in debilitating bone fractures that may be preventable with 
earlier diagnosis and preventative measures.       
 
Conclusion 
 In this study, we developed a preliminary method to quantify bone density using 
radiographs, employing geometrical modeling of both cortical bone and soft tissues of a 
radiograph dataset to estimate bone density without interference from soft tissues. We were able 
to successfully quantify bone densities in the tibia, as validated by CT measurements. Greater 
correlation to absolute density was observed for our method as compared to other peripheral or 
low-cost methods that aim to be used in developing countries or other areas where DXA 
scanners are not available. However, future work needs to be done to address sites with greater 
overlap or more irregular geometry before this method can be employed clinically. Ultimately, 
this work constitutes progress towards a low-cost, widely accessible method for osteoporosis 
diagnosis in developing countries. 
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