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ABSTRACT

Software verification, which aims to prove critical properties about programs using rigorous
formal methods based on logic, is an active area of research in the field of computer science. In
particular, the verification of floating-points is a topic of paramount importance, given their
ubiquity across a wide range of software, including video games, OS kernels, medical devices,
and rockets. Several years ago, floating-point support was added to the Boogie verifier, a tool
that is widely used by researchers in both industry and academia. In this thesis, I present
the expansion of Boogie’s original implementation to support rounding modes, an updated
syntax for floating-point constants, and the fixing of various bugs, among other changes.
I also present the addition of support for the math.h functions in the SMACK toolchain,
which utilized Boogie’s updated implementation in order to do so. Finally, I compare the
performance of the updated implementation against other competitive verification tools on
a comprehensive set of floating-point benchmarks.
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1 INTRODUCTION

Software verification, which aims to prove properties about programs using rigorous formal
methods based on logic, is an active and critical area of research in the field of computer
science. Because of the magnitude and importance of verifying that a program works as
intended, a myriad of software tools have been developed for this task (see the results of
the annual software verification competition SVCOMP for a list of such tools [35]). In the
past several decades, researchers have invented a number of software verification techniques.
More recently, techniques based on automated theorem provers have been shown to be
particularly promising. There are several steps involved in performing verification using such
techniques. The actual verification is typically performed by a Satisfiability Modulo Theories
(SMT) solver, which takes as input the program expressed as a series of mathematical logic
statements, and utilizes a variety of algorithms in order to solve for them. However, the
issue remains of translating an input source file into a set of logic statements.

One tool that can be leveraged to bridge this gap is the Boogie intermediate verification
language (IVL), an intermediate representation that lies between high-level programming
languages and first-order logic format [3]. Verification tools including Corral [22] and Boo-
gie [3] have been developed that can convert Boogie IVL programs into first-order logic
statements, pass these statements to a built-in SMT solver such as Z3 [27], and output the
verification result.

Another tool that aids in this process is the SMACK verification toolchain [31], which is
capable of converting LLVM Intermediate Representation (IR) into Boogie IVL. LLVM [24]
is a compiler infrastructure that includes a tool called Clang [8]. Clang translates source
files written in high-level programming languages into a single universal intermediate repre-
sentation and that has support for many popular languages including C, C++, C#, Java,
and Python. By using the intermediary languages of Boogie and LLVM IR, a tool such as
SMACK to translate between them, and a back-end verifier such as Corral to verify the
resulting logic statements, users are able to verify the assertions in input programs.

Floating-point verification is a sub-field of software verification that has gained significant
importance. Floating-point arithmetic appears in a wide variety of software applications,
ranging from video games and device drivers to flight navigation systems and radiation
therapy machines. However, there are relatively few verification tools that provide support
for floating-point types. In 2016, Dietrich Geisler, a University of Utah alumni, added
floating-point support to the Boogie verifier, basing the implementation on the SMT-LIB
FloatingPoint theory [33]. This theory is supported by a variety of SMT solvers and is itself
based off of the 2008 revision to the IEEE 754 standard [20]. The floating-point support was
designed to provide a human-readable Boogie syntax while being easily translatable to SMT-
LIB format. However, the initial implementation was incomplete and possessed a variety of
bugs. Several parts of the SMT-LIB standard were missing in the implementation, including
support for rounding modes. The implementation was incompatible with the Corral verifier, a
tool which is dependent on Boogie, failing on simple floating-point regressions. Additionally,
the syntax for floating-point constants was relatively complex and difficult to convert to and
from standard decimal notation.

Dietrich also began adding support to SMACK for modeling the math.h functions from
the C Standard Library, utilizing Boogie’s floating-point implementation in order to do so.



However, this project was left mostly unfinished, and many of the implemented function
models were incorrect.
My main contributions are:

e [ added support for rounding modes to Boogie’s existing floating-point implementation

e With the help of Rustan Leino, I devised and implemented a novel syntax for floating-
point literals in Boogie

e Building on the initial work done by Dietrich, I added support in SMACK for verifying
the math.h functions from the C Standard Library

e All of the source code that I wrote was peer-reviewed, tested, and merged by the Boogie
and SMACK developers into their respective main trunks.

In this thesis, I begin by describing several tools referenced throughout subsequent chap-
ters. Next, I present the original implementation of floating-points in Boogie. 1 follow this
by describing the issues present in the original implementation, as well as how the updated
implementation resolved each of these issues. I then detail how I utilized Boogie’s updated
implementation in order to finish adding support for the math.h functions in SMACK. Next,
I present the experimental results of making these fixes. I did this by leveraging SMACK
and running it against a comprehensive set of floating-point benchmarks obtained from the
Software Verification Competition (SV-COMP) 2017 [35]. I then give an overview of the
related work that has been done on floating-point verification, followed by my conclusions.



2 BACKGROUND

2.1 Boogie

Boogie refers to a procedural language designed as an intermediary form between high-level
programming languages and first-order logic format. It is a platform that may be used to
build verifiers for programs written in other languages [3]. Boogie also refers to a verification
tool that accepts Boogie IVL code as input. The tool generates a set of weakest preconditions
for the program [1] and passes the result to an SMT solver. Currently, Boogie has support
for the Z3 and CVC4 [11] solver tools.

2.2 SMACK

The SMACK verification toolchain is capable of transforming LLVM Intermediate Represen-
tation (IR) [24] into Boogie code. LLVM IR is a low-level, platform independent instruction
set, serving as a universal intermediate representation of programs written in higher-level
languages. SMACK is also an end-to-end toolchain for software verification, providing a
complete environment for users to analyze the assertions in input programs. Figure 2.1
depicts a visualization of this process. First, SMACK includes Clang [8], a sub-project of
LLVM that translates input source files into LLVM IR. After the LLVM IR is run through
several optimization passes, SMACK translates it into Boogie code. The Boogie code is then
passed to a back-end verifier included with SMACK, which is responsible for computing
the final verification result. SMACK comes packaged with four back-end verifiers: Corral,
Boogie, Duality [13], and Symbooglix [23].

2.3 Existing Floating-Point Support in Boogie

In this section, I describe the features included in the original floating-point support added
to Boogie in 2016, which was primarily developed by Dietrich Geisler. For more details
regarding the development of this implementation, refer to previous work [29].

Symbooglix
optimize & analyze verifier
N
Boogie
verifier

Boogie
code

LLVM

bitcode Corral

verifier

Duality
verifier

Figure 2.1: The SMACK Toolchain



Table 2.1: Special Values
] Value \ Declaration ‘

+infinity | O+oo[sigSizele[expSize]

-infinity | 0O-oo[sigSize]e[expSize]
NaN ONaN[sigSize]e [expSize]

Type declarations A floating-point type with sigSize significand bits and expSize ex-
ponent bits is defined using the syntax float[sigSize+1]le[expSize] (the +1 signifies an
implicit bit in front of the decimal place). Both sigSize and expSize must be greater than
1. For example, a floating-point variable with 52 significand bits and 11 exponent bits may
be defined like so:

var t : floatb3ell;

Constant declarations A floating-point constant is defined using the syntax
(-) [siglelexpl f [sigSizele[expSize]. In the above syntax, sig is the significand value, exp
is the exponent value, sigSize is the number of significand bits, and expSize is the number
of exponent bits. Finally, the presence of a - sign signifies a negative value.

For example, the constant -17.75 is defined using the following syntax:

var t : floatlleb;
t := -112e19flleb;

NaN and +infinity may be defined using the above syntax. For example, +infinity may
be defined in the following way:

var t : floatlleb;
t := 0e31flleb;

Alternatively, these special values may be defined using the syntax shown in Table 2.1.

Built-in operators There are several floating-point operators that are built into Boogie’s
syntax. These operators, as well as their corresponding syntax, are shown in Table 2.2. All
arguments must share the same significand size and exponent size. If the return value is
a float type, it is guaranteed to have the same significand size and exponent size as the
arguments.

Accessing operators with the ”builtin” attribute The ”builtin” attribute enables
access to operators that are not built into Boogie. These operators are listed in Table 2.3.
As was the case with the built-in operators, all arguments must share the same significand
size and exponent size. If the return value is a float type, it is guaranteed to have the same
significand size and exponent size as the arguments.

These functions are accessed by creating a new function with function_name’ that takes
in type arguments ’arg_types’ and returns a value of type 'return_type’, with the syntax
below:



Table 2.2: Built-in Operators
] Operator \ Built-in syntax \ Return type ‘

fp.neg(x) -X float
fp.add(x, y) X+y float
fp.sub(x, y) X-y float
fp.mul(x, y) x ¥y float
fp.div(x, y) x/y float
fp.leq(x, y) X <=y boolean
fp.lt(x, y) X <y boolean
fp.geq(x, y) X >=y boolean
fp.gt(x, y) X >y boolean

Table 2.3: Operators Accessible with the ”builtin” Attribute

Operator Return type
fp.abs(x) float
fp.fma(x, y, z) float
fp.sqrt(x) float
fp.rem(x, y) float
fp.roundTolntegral(x) float
fp.min(x, y) float
fp.max(x, y) float
fp.isNormal(x) boolean
fp.isSubnormal(x) boolean
fp.isZero(x) boolean
fp.isInfinite(x) boolean
fp.isNaN(x) boolean
fp.isNegative(x) boolean
fp.isPositive(x) boolean

function {:builtin "fp.op"} ’function_name’(args) returns (return_type);
Here is an example showing how to use the fp.abs function:

type float32 = float24eS8;
function {:builtin "fp.abs"} abs(float32) returns (float32);

procedure foo() {
var x : float32;
var y : float32;
x = -0el127f24e8; //x = -1
y := abs(x);
assert(y == 1);



Table 2.4: Rounding Modes

Rounding Mode Acronym
roundNearestTiesToEven RNE
roundNearestTiesToAway RNA

roundTowardPositive RTP
roundTowardNegative RTN
roundTowardZero RTZ

This same syntax may also be used for the built-in operators. For example, the following
code accesses the "fp.It” operator via the ”builtin” attribute:

type float32 = float24eS8;
function {:builtin "fp.lt"} less_than(float32, float32) returns (bool);

procedure foo() {
var x : float32;
var y : float32;
x := —-0e127f24e8; //x = -1
y := 0el127f24e8; //y = 1
assert(less_than(x, y));

}

Operators that Accept a Rounding Mode Some of the functions shown in Tables 2.2
and 2.3 require a rounding mode to be passed to it. This is done by passing it as an
argument to the ”"builtin” attribute when using the syntax described in the previous section.
The rounding modes supported by Boogie are shown in Table 2.4. For example, the following
code shows how to declare the "fp.add” operator using the RTP rounding mode:

function {:builtin "fp.add RNE"} add_rne(float24e8, float24e8) returns
(float24e8);

function {:builtin "fp.add RTP"} add_rtp(float24e8, float24e8) returns
(float24e8);

procedure foo() {
var x : float24e8;
var y : float24e8;
var zl1 : float24e8;
var z2 : float24e8;

zl .
z2 :

add_rne(x, y);
add_rtp(x, y);

assert(zl <= z2);
assert(zl == x + y);



Table 2.5: Type Conversion Functions

Operator Return Type

to_fp(float) float
to_fp(real) float
to_fp(bit_vec) float
to_fp_unsigned (bit_vec) float

fp.to_ubv(float) bit_vec

fp.to_sbv(float) bit_vec
fp.to_real(float) real

}

Note that using operators with the built-in syntax defaults to the RNE rounding mode,
as demonstrated by the second assertion.

Type Conversions The ”builtin” attribute is also used to access several type conversion
functions, which are listed in Table 2.5. The syntax for accessing these operators is slightly
different than for operators described in previous sections. Specifically, to_fp is accessed by
passing the string (_ to_fp expSize sigSize) to the ”builtin” attribute. For example, the
following code converts a 16-bit floating-point value to a 32-bit one:

type floatl6
type float32

floatlleb;
float24e8;

function {:builtin "(_ to_fp 8 24) RTP"} floatl6_to_float32(floatl6)
returns (float32);

procedure foo() {
var £ : floatl6;
var g : float32;
f := Oelbflleb;
g := floatl6_to_float32(f);
assert(g == 0e127f24e8);
}

Additionally, fp.to_ubv and fp.to_sbv are accessed by passing the string (_ op_name
bvSize) to the "builtin” attribute. Here is an example that converts a 32-bit floating-point
value to a bit vector of size 32:

type float32 = float24eS8;

function {:builtin "(_ fp.to_ubv 32) RTZ"} float32_to_bv32(float32) returns
(bv32);

procedure foo() {
var £ : float32;



var g : bv32;
f := 2097152e127f24e8; // f = 1.25
g := float32_to_bv32(f);
assert(g == 1bv32);
}

fp.to_real is accessed in the same way as operators in the previous sections.



3 ENHANCING SUPPORT FOR FLOATING-POINTS

I will now describe the changes made in the updated floating-point implementation in Boo-
gie. These changes include the fixing of several significant bugs, revision of the syntax for
floating-point constants, addition of rounding mode support, major code reorganization, and
renaming of regressions.

3.1 Correct Types Returned for Floating-Point Expressions

In the original implementation, floating-point expressions were sometimes computed to have
an incorrect return type. For example, Boogie threw an exception when provided the fol-
lowing program:

1 type Ref;
2 var Heap: HeapType;
3 type Field A B;
1 type HeapType = <A, B> [Ref, Field A B]B;
6 procedure mfl(one: float23ell, two: float23ell) returns () {
7 assert two == one;
8 }
The expression at line 8, two == one, will return a result of type float23e11, even though

the assert expression expects a Bool value as an argument. I resolved this issue in a pull
request, which can be viewed at [17].

3.2 Valid Programs Passed to Corral

Additionally, the original implementation resulted in errors within the Corral verifier. Cor-
ral is a verification tool that utilizes goal-directed symbolic search strategies in order to
verify Boogie programs [10]. Additionally, Corral’s implementation depends on Boogie’s.
Corral obtains intermediate versions of programs processed by Boogie, which it then further
processes. However, the original floating-point implementation was resulting in Boogie gen-
erating syntactically incorrect intermediate programs. For example, consider the following
Boogie program:

procedure foo(a: float24e8, b: float24e8) {
a := 0el127f24e8; //a = 1
b := 0e128f24e8; //b
assert (a + a == b);

}

Given the above program as input, Boogie will generate the following intermediate pro-
gram:

procedure foo(a: float24e8, b: float24e8) {
a := 0x2\"127; //a =1
b := 0x2\"128; //b = 2
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assert (a + a == b);

}

I resolved this issue in a pull request, which can be viewed at [9].

3.3 Redesign of Floating-Point Constants

The primary issue with the original floating-point syntax was that it was relatively difficult
for a human to convert to and from standard decimal notation. It also possessed several
features that were confusing to both new users and those unfamiliar with how floating-
points are represented in memory, as specified by the IEEE 754-2008 revision. The redesign
of floating-point constant syntax followed several guiding principles explicated by Rustan
Leino at [32]. These guidelines are described below.

3.3.1 No Synonyms for Special Values

Under the original syntax, floating-point special values could be represented in multiple
ways. For example, the floating-point constant +infinity (for a 23-bit significand and 8-bit
exponent) may be represented as either 0+oo24e8 or 0e255f24e8. This becomes potentially
confusing for users who may not be able to tell whether they are writing a special value or
a value that falls within the bounds of the valid floating-point range.

Under the new syntax, synonyms for special values are disallowed. =+infinity and NaN
may only be written using the syntax listed in Table 2.1.

3.3.2 Readable Mantissa and Exponent

Consider representing the number 10 in Boogie, using a 23-bit significand and an 8-bit
exponent. A human must use roughly the following process to perform the conversion:

1010 = 1010, = 1.01 % 23 = 1.01 % 22" '=1D=127 _ 1 (1 4 2130127

The final expression implies that the exponent value is 130 and the significand value is 101.
Because the hidden-bit convention is used, the first 1 is implicit. Additionally, the significand
must be 23 bits long. Therefore, the significand is actually 010_0000_0000_0000_0000_0000, =
20971521¢. This corresponds to a Boogie constant string of 2097152e130f24e8.

As illustrated above, converting from decimal to Boogie constant syntax is a relatively
long and error-prone process. Converting the opposite direction is similar in difficulty. Ide-
ally, the conversion process should be shorter, and the representation should be easier to
read.

The new design makes several changes to the syntax to accomplish this. Firstly, it makes
the exponent unbiased. The IEEE 754 standard specifies that a bias value is added to the
exponent of the desired number to obtain the corresponding bit pattern. Specifically, for
a floating-point value with a w-bit exponent, a bias of 2*~! — 1 is added to the exponent.
This is done in order to provide a clean method of representing both positive and negative
exponents. For example, to represent the value 0.25 = 1.0%272 using 8 bits for the exponent,
a bias of 2871 — 1 = 127 is added. Thus, 0.25 is represented within Boogie as 0e-2f24e8.
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Note that the value of the exponent is 125 instead of —2, since the bias of 127 is added to
obtain the proper value.

However, while adding a bias is required to represent floating-points internally abiding
by the IEEE-754 standard, it is completely unnecessary to do so at the user level. Users
who are unfamiliar with this convention may mistakenly think that the value 0e125f24e8 is
equivalent to 1.0*2'?® instead of 1.0% 2257127 The new syntax thus changes the exponent to
be unbiased, simplifying the syntax and making it easier to understand. With this change,
the Boogie string to represent 10 changes from 2097152e130£24e8 to 2097152e3f24e8.

The second change in the new syntax is the removal of the hidden bit convention. The
IEEE 754 standard specifies that the first set bit in the significand is not explicitly included
in its internal representation. In the original Boogie syntax, this convention was replicated.
However, many users who are unfamiliar with this convention can mistakenly include it
as part of the significand. The hidden-bit convention is unnecessary in user-level syntax,
confuses users, and complicates the representation. In the new syntax, the first bit is included
by prepending the significand with the string ”1.”.

Additionally, the significand is now written in hexadecimal notation instead of decimal.
This accomplishes several things. Firstly, it simplifies conversion from binary; it is much
easier to convert between binary and hexadecimal than it is to convert between binary and
decimal. Secondly, it shortens the resulting constant string; using a higher base reduces the
number of characters needed to write the significand. With the removal of the hidden-bit
convention and a hexadecimal significand, the Boogie string to represent 10 changes from
2097152e3f24e8 to 1.200000e3f24e8.

Finally, and most importantly, the significand is now written in a left-to-right man-
ner instead of right-to-left. For example, consider the significand in the above example,
which was originally treated as 010-0000-0000-0000-0000-0000. Left as is, this would be
written in hexadecimal as 200000. However, to a human, it is counterintuitive to write
this number starting from the right. When we write decimal numbers on paper, we start
from the left and progress to the right. Thus, the significand should instead be treated as
0100-0000-0000-0000-0000-000. Therefore, the Boogie string to represent 10 changes from
1.200000e3f24e8 to 1.400000e3f24e8.

Another important change it to allow the user to exclude unnecessary trailing zeroes if
they choose. This further simplifies the Boogie string to 1.4e3f24e8.

For consistency with the hexadecimal significand, the exponent is now in base 16 instead
of base 2. To accommodate this change, the digit before the decimal point is also allowed
to be any hexadecimal digit, not just a 1. This now results in a Boogie constant string of
A.0e0f24e8 to represent 10.

3.3.3 Unnormalized Significand

Finally, the new syntax allows the significand to be unnormalized. In other words, there can
be arbitrarily many digits before and after the decimal point, provided that the floating-
point value that the written constant is equivalent to can fit within the specified number
of significand and exponent bits. Thus, 10 can be written in Boogie as 0xA0.0e-1f24e8,
0xA.0e0f24e8, 0x0.Ael1f24e8, 0x0.0Ae2f24e8, etc
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3.4 Updated Constant Syntax

In this section, I describe my implementation of Boogie’s updated floating-point constant
syntax, following the guidelines stated in previous sections.
A floating-point constant can be declared with the following syntax:

(-)0x[siglelexplf[sigSizele[expSize]

In the above line:

sig = hexdigit {hexdigit} ’." hexdigit {hexdigit}
exp = digit {digit}

sigSize = digit {digit}

expSize = digit {digit}

A floating-point number written using the above syntax is equivalent to the value (—)(sig*
16°"P). As long as the equivalent value fits in a floating-point variable with ’sigSize’ signif-
icand bits and ’expSize’ exponent bits, there are no restrictions on the values of ’sig’ and
‘exp’.

The significand must have trailing zeros such that the last nibble is fully included. For
example, in order to represent a floating-point value that has a 24-bit significand with the
bit pattern 1_.0000_0000_.0000-0000_0000_001 (including the hidden bit at the beginning) and
an exponent of 0, it may be written as 0x1.000002e0f24e8, but not 0x1.000001e0f24e8.

As another example, we can assign the constant -2.25 to var 'name’ by writing:

var name : float24e8;
name := -0x2.4e0f24e8;

It is disallowed to use synonyms of the special values listed in Table 2.1 (for example,
0x1.0e32f24e8 is equivalent to 0+0024e8 but is a syntax error).

3.5 Rounding Mode Support

In the original implementation, Boogie had no support for reasoning about rounding modes.
Tools that convert programs written in a high-level programming language to Boogie would
be unable to do so if the program involved rounding modes. For example, consider the
following snippet of C code:

if (x == 1) {

fesetround (FE_UPWARD) ;
} else {

fesetround (FE_DOWNWARD) ;
}
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float y = floor(3.5);

fesetround is a Standard Library function that allows the user to set the rounding mode
used by the program. Without a way of explicitly representing and reasoning about rounding
modes in Boogie, verification tools have no way of modeling the above code.

To resolve this issue, I added a rounding mode type to Boogie, accessible through the
rmode keyword. It is capable of modeling the five rounding modes defined in the SMT-LIB
FloatingPoint theory, listed in Table 2.4.

For example, the RoundTowardNegative rounding mode may be assigned to var 'mode’
by writing:

var mode: rmode;
mode := RTN;

Or, alternatively, the full name may be used:

var mode: rmode;
mode := roundTowardNegative;

3.5.1 Using a Rounding Mode with ”builtin” Functions

In the original implementation, SMT-LIB functions that used rounding modes needed to have
them hard-coded in the function definition, as described in Section 4.3. If a user wanted to
use a specific function with different rounding modes, they would have to include separate
declarations for each rounding mode. However, with the addition of a rounding mode type,
operators that accept rounding modes may now do so as an argument to the function itself,
rather than as an argument to the ”builtin” attribute. This is done by creating a new
function with function_name that takes in arguments of types arg_types, along with an
rmode variable, and returns a value of type return_type, using the syntax below:

function {:builtin "fp.op"} ’function_name’(rmode, args)
returns(return_type) ;

For example, the following code demonstrates how to declare the ”fp.sub” operation and
use it with both the RNA and RTZ rounding modes:

function {:builtin "fp.sub"} sub(rmode, float24e8, float24e8) returns
(float24e8);

var x : float24e8;
var y : float24e8;
var z : float24e8;

N
I

sub(RNA, x, y);
sub(RTZ, x, y);

N
I
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Or, alternatively:

function {:builtin "fsub"} sub(rmode, float24e8, float24e8) returns
(float24e8);

var mode : rmode;
var x : float24e8;
var y : float24e8;
var z : float24e8;

mode := RNA;
z := sub(mode, x, y);
mode := RTZ;
z := sub(mode, x, y);

Additionally, as explained in Section 4.3, operators that accept rounding modes may be
declared to conform to a specific rounding mode that is specified as part of the ”builtin”
attribute.

3.6 Code Reorganization

The min, max, and rem floating-point functions originally could be accessed without the
"builtin” attribute, which was inconsistent with the other SMT-LIB functions. I revised the
implementation such that the ”builtin” attribute is now required to access these functions.

Additionally, I made changes to the regressions included in the Boogie project that test
the floating-point implementation. These regressions were originally named ”float1.bpl”,
"float2.bpl”, etc. Having uninformative names made it difficult to determine what feature
each one was testing. Thus, I renamed these regressions to reflect their individual intended
purpose.

I made both of the above changes in a pull request that can be viewed at [26].
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4  APPLICATIONS

4.1 SMACK Support for math.h Functions

I used Boogie’s floating-point implementation to add support in SMACK for verifying the
C standard library math.h functions. This project was begun in 2017 by adding support for
some of the math.h functions. However, most of the functions were either unimplemented
or modeled incorrectly. To resolve these issues, I added models to SMACK for most of
the remaining functions and rewrote many of the existing models. Each model includes
explicit Boogie code that makes calls to relevant ”builtin” functions. For example, SMACK
implements the fabs function like so:

double fabs(double x) {
double ret = __VERIFIER_nondet_double();
__SMACK_code("@ := $abs.bvdouble(@);", ret, x);
return ret;

}

Note how short the implementation is, due to there being an equivalent ”builtin” absolute
value function. Also note how the __SMACK_code function must be called in order to inject
inline Boogie code into C programs. When SMACK verifies an input C program that includes
a call to fabs, it will generate the following Boogie code to model the fabs function:

type bvfloat = float24eS8;
function {:builtin "fp.abs"} $abs.bvfloat(i: bvfloat) returns (bvfloat);

var i: bvfloat; //the argument passed to fabs
var j: bvfloat; //the return value of fabs

j:= $abs.bvfloat(i);

Some functions require more involved implementations, due to not having an equivalent
"builtin” function. For example, below is the code for modeling the modf function:

double modf (double x, double *iPart) {

double fPart = __VERIFIER_nondet_double();
if (__isinf(x)) {

*iPart = x;

fPart = 0.0;
} else {

*iPart = trunc(x);

__SMACK_code("@ := $fsub.bvdouble($rmode, @, @);", fPart, x, *iPart);
}
if (__iszero(fPart)) {

fPart = (__signbit(x)) 7 -0.0 : 0.0;
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}
return fPart;

}

Table 4.1 displays a list of the math.h functions currently supported by SMACK. The
models may be viewed at [25].

4.1.1 Regressions

The vast majority of the math.h functions result in special behavior when passed =0,
+infinity, or NaN. In order to help ensure that the models matched expected behavior
for all cases, I wrote regressions in the SMACK project for each supported function. The
regressions collectively total approximately 4000 lines of C code. For example, below is the
regression that tests SMACK’s model of the fmod function:

#include "smack.h"
#include <math.h>

// Qexpect verified
// @flag --bit-precise

int main(void) {

double NaN = 0.0 / 0.0;

double Inf = 1.0 / 0.0;

double negInf = -1.0 / 0.0;

double val = __VERIFIER_nondet_double();

if (!__isnan(val) && !__isinf(val) && !'__iszero(val)) {
if (val > 0) {

assert(fabs(val) == val);
} else {
assert(fabs(val) == -val);

}
}

assert (fabs(0.0) == 0.0);
assert(fabs(-0.0) == 0.0);
int isNeg = __signbit(fabs(-0.0));

assert(!isNeg);

assert(fabs(Inf) == Inf);
assert(fabs(negInf) == Inf);

assert(__isnan(fabs(NaN)));

return O;
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float fabsf(float)

double fmod(double, double)

float fdimf(float, float)

double modf(double, double*)

float roundf(float)

double copysign(double, double)

long lroundf(float)

double nan(const char™®)

float rintf(float)

int isnormal(double)

float nearbyintf(float)

int issubnormal(double)

long Irintf(float)

int iszero(double)

float floorf(float)

int isinf(double)

float ceilf(float)

int isnan(double)

float truncf(float)

int isnegative(double)

float sqrtf(float)

int signbit(double)

float remainderf(float, float)

int fpclassify(double)

float fminf(float, float)

int finite(double)

float fmaxf(float, float)

long double fabsl(long double)

float fmodf(float, float)

long double fdiml(long double, long double)

float modff(float, float™*)

long double roundl(long double)

float copysignf(float, float)

long lroundl(long double)

float nanf(const char*)

long double rintl(long double)

int isnormalf(float)

long double nearbyintl(long double)

int issubnormalf(float)

long Irintl(long double)

int iszerof(float)

long double floorl(long double)

int isinff(float)

long double ceill(long double)

int isnanf(float)

long double truncl(long double)

int isnegativef(float)

long double sqrtl(long double)

int signbitf(float)

long double remainderl(long double, long double)

int fpclassifyf(float)

long double fminl(long double, long double)

int finitef(float)

long double fmaxl(long double, long double)

double fabs(double)

long double fmodl(long double, long double)

double fdim(double, double)

long double modfi(long double, long double*)

double round(double)

long double copysignl(long double, long double)

long lround(double)

long double nanl(const char*)

double rint(double)

int isnormall(long double)

double nearbyint(double)

int issubnormall(long double)

long Irint(double)

int iszerol(long double)

double floor(double)

int isinfl(long double)

double ceil(double)

int isnanl(long double)

double trunc(double)

int isnegativel(long double)

double sqrt(double)

int signbitl(long double)

double remainder(double, double)

int fpclassifyl(long double)

double fmin(double, double)

int finitel(long double)

double fmax(double, double)
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4.2 SMACK Support for Rounding Modes

I added rounding mode support to SMACK by writing models for the fegetround and
fesetround functions, which are C Standard Library functions that are part of the fenv.h
header file. These functions allow for the reading and writing, respectively, of the rounding
mode used by the program. The models for these functions may be found at [16].

4.3 O2Controller

I am currenctly using the updated floating-point support in Boogie and SMACK to verify
O2Controller, a medical device that monitors oxygen flow used by patients, being developed
by Dynasthetics [15], a Utah based company. O2Controller is implemented in C and contains
over a thousand lines of heavy floating-point computations. I, along with Prof. Zvonimir
Rakamari¢, have collaborated with the developers of O2Controller in order to determine the
most salient portions of the code to verify, add assertions accordingly, and verify the code
using Boogie. Although this project is still a work in progress, Boogie has already shown
promising results. It has caught several bugs in the program that Corral failed to catch
within a reasonable time limit. For example, Boogie verified four key properties of this
application in eleven minutes, while Corral spent more than three hours to verify just one
of these properties.
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5 EXPERIMENTS

In 2017, SMACK participated in the Software Verification Competition (SV-COMP), com-
peting against a myriad of other verification tools. SV-COMP was designed as a way to
spread awareness of the state of the art in verification technology, as well as establish an
accepted set of benchmarks that researchers can use to compare the performance of tools.
SV-COMP’s benchmarks are divided into distinct categories that each test different aspects
of programs, including loops, memory safety, and concurrency. ReachSafety-Floats is a cate-
gory consisting of benchmarks that make heavy usage of floating-point operations. SMACK
was using Corral as its back-end verifier during this time.

Table 5.1 shows the results of running a performance comparison between SMACK
with Boogie, SMACK with Corral, Ceagle [37], and ESBMC [30] on the SV-COMP 2017
ReachSafety-Floats category benchmarks. The entry for the verifier, "SMACK w/ Boo-
gie” corresponds to SMACK using Boogie’s updated floating-point implementation. As the
results illustrate, although SMACK obtained better results with Boogie’s updated implemen-
tation, it was still outpaced by Ceagle and ESBMC, the winner and runner-up, respectively,
of the ReachSafety-Floats category in SV-COMP 2017. These tools are likely much more
optimized for float-point operations than SMACK is. Additionally, Boogie uses Z3 as its
back-end SMT solver by default. These tools may be using SMT solvers that perform better
than Z3 on floating-point expresions.

Table 5.1: SV-COMP Benchmark Results
Verifier # Solved | # Timeout | # Error
SMACK w/ Boogie 92 70 10
SMACK w/ Corral 85 78 9
Ceagle 164 0 8
ESBMC 169 0 3
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6 RELATED WORK

There currently exist a variety of verification tools that are capable of analyzing floating-point
expressions. FPTaylor [34] is a tool designed to estimate the round-off error of floating-point
calculations. A related tool, FPTuner [6], may be used to tune the precision of multiple
floating-point expressions in order to achieve an error bound that is below some threshold.
KLEE [4] is a symbolic execution engine that operates on LLVM IR and is able to execute
statements involving floating-point variables.

ESBMC is a context-bounded model checker that placed first in the ReachSafety-Floats
category of benchmarks. It has support for a variety of SMT solvers, including Z3 and Math-
SAT [7]. [18] shows that, when using MathSAT, ESBMC outperforms Z3 and approaches
used by other tools in SV-COMP. Ceagle is another tool that obtained strong results in
SV-COMP, placing second in the ReachSafety-Floats category.

CBMC [21], like ESBMC, is a bounded model checker for C/C++ programs. It comes
packaged with a MiniSat-based solver that supports the SMT-LIB FloatingPoint theory.
However, it also support external verifiers, including Z3, MathSAT, Yices 2 [14], and Boolec-
tor [28].

In SV-COMP 2019 [36], VeriAbs [12] placed first in the ReachSafety-Floats category.
VeriAbs is a bounded model checker, but utilizes techniques including abstract acceleration
and k-induction in order to scale for large loop iterations. Pinaka [5], which placed second
in 2019, is a tool built on the CProver framework. It it capable of reasoning about rounding
modes for floating-point operations.

Other verification tools that support floating-point functionality include Ultimate Au-
tomizer [19] and BLAST [2]. Many of the tools described in this chapter have competed in
SV-COMP, and the results of this competition serve as a useful performance comparison.



21

7 CONCLUSIONS AND FUTURE WORK

I extended the existing floating-point support in the Boogie verification tool by making the
syntax more readable, adding rounding mode support, changing the implementation to be
consistent with the SMT-LIB floating-point standard, and fixing several bugs, including
incompatibility with Corral. I used the updated implementation to finish adding support in
SMACK for verifying the math.h functions from the C Standard Library. In addition, I used
Boogie and SMACK’s implementation to find and resolve bugs in O2Controller, a real-world
application.

The performance of SMACK on floating-points still does not reach the level of the top-
performing verification tools in SV-COMP, such as ESBMC and Ceagle. These tools are
almost certainly taking advantage of algorithms and optimizations that SMACK is not. As
future work, it would be useful to investigate what these approaches are and implement them
into SMACK in order to improving its own performance.

Additionally, the work with O2Controller remains incomplete. So far, key portions of
the code have been analyzed disjointly, but the entire codebase has not been analyzed in its
entirety. I would like to fully verify O2Controller and see it be approved by the FDA for
official usage.

Finally, although the regressions for evaluating the correctness of the math.h models in
SMACK are comprehensive, they do not prove that the models match the specified behavior
for these functions. As future work, I would like to utilize more advanced techniques, such as
differential testing, to validate the accuracy of these models by comparing them with official
implementations of the math.h functions.
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