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ABSTRACT 

Deep Learning (DL) and Convolutional Neural Networks (CNNs) have been established 

as a powerful class of models for image recognition problems. Encouraged by this, we 

implemented a system that can accurately predict handwritten numbers from a raw 

CMOS machine image. Current forms of deep learning do not target non-

anthropomorphic camera images that our sensors will be producing. The concept of the 

project is that an implemented machine system can interpret our CMOS camera data thus 

having the ability to make out what it captures. To develop our system it took: creating a 

dataset, developing a trained convolutional neural network (CNN), and testing our system 

on live images. Our results included {0,1} at 99%, {0-4} at 80.6%, and {0-9} at 57.0% 

prediction accuracy respectively. In theory, from this we will have composed a system 

that can function on "non-human cameras as the eyes for the internet of things” for every 

machine system with an image capturing sensor embedded within it.   
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1 INTRODUCTION 

1.1 Background and Related Work 

Deep learning (DL), a subfield of machine learning (ML), has been widely applied to image 

recognition/classification. Work on image recognition is commonly noticed services in Google 

and Apple Photos. A simple example of this image recognition is easily seen when a user types 

“dog” in the search bar and all the images with a dog are filtered at an astounding ~100% rate. 

To extend this application to data generated by a camera comprised of only a standard 

Complementary Metal Oxide Semiconductor 

(CMOS) image sensor with no lens was our objective. The premise being that if machines were 

able to decipher their surroundings limitless advances in computing, robotics, medical imagery, 

autonomous driving, etc. could be based off these root principles. For example, imagine a 

machine being able to examine MRI scans without a doctor having to look through them and 

thus diagnosing a patient as a virtual assistant. It could give details that the doctor could then 

look into, assess, and ultimately help treat. If machine image recognition could advance to 

consistent and reliable accuracy, doctors could focus on patient interaction and improving 

practices with the security of having machines do thousands of image recognitions in an 

unprecedented amount of time. Cameras generally include lens to allow humans to distinguish 

what the sensor captures. When the lenses, stabilization, optimization and camera setting are all 

removed you’re left with the bare bones of what the machine data really captures.  

A primary motivation for these tests stems from the aspect that non-anthropomorphic images 

have not been widely targeted by DL and ML (a detailed overview of the differences between 

machine learning and deep learning are given further along). With a variety of image 

classification systems having already been implemented for anthropomorphic image 
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recognition/classification we theorized that the same general concept could be applied to 

machine data images. This concept could revolutionize the amount of physical space image 

recognition requires in devices while also stimulating machine computing power. With a strong 

understanding of the background and other related work we were confident that implementing a 

machine using only deep learning applications was entirely possible. 

Machine data images are unreadable to the human eye; an example of a handwritten 7 taken by a 

machine CMOS sensor is given below: 

 

Figure 1: Depicts one image of our very own custom data set. The dark portions above are dust particles while the 

subtle streaks of white/grey are light.  

To ensure that our concepts could transition into a project, experimentation had to be done before 

our deep dive into expensive time consuming big data computing.  This process initially started 

with image reconstruction and feature extraction based off images of scattered CMOS readings. 

Image reconstruction techniques are used to create 2-D and 3-D images from sets of 1-D 
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projections. These reconstruction techniques form the basis for common imaging modalities such 

as CT, robotic imagery, MRI, autonomous sensors, and PET. [1] The mathematical foundations 

for these reconstruction methods are the Radon transform, the inverse Radon transform, and the 

projection slice theorem. Computational techniques include filtered back projection and a variety 

of iterative methods. We used pre-existing MATLAB radon transform and projection slice 

algorithms to reconstruct our images. Several projection geometries are commonly used, 

including parallel beam, fan beam, and cone beam. One of the principle reasons we started using 

MATLAB as our interface for this project was because of the sensational analysis and toolbox 

tools it contained. Typical deep learning projects are implemented using Python, which is an 

object-oriented, high-level programming language with dynamic semantics. Python gives an 

interesting approach with a lot of flexibility in designing a successful interface but lacks prebuilt 

analysis. Some of the analysis in MATLAB includes: capabilities for bagOfFeatures, 

Classification Learners, confusion matrixes, encoding plots, and powerful data processing 

capability/flexibility. The Shepp-Logan phantom image is often used to evaluate different 

reconstruction algorithms but for our purposes we simply used our judgment. To begin this 

experiment, a dark lab was used to gather data (images in the form of. png’s) off LED screens. 

After our data samples were collected and results were captured we had a tremendous amount of 

capability. 

Some examples of a Radon transform and splice theorem conversion performing on our scattered 

sensor image are given below: 

The left reference is the image constructed on an LED board run by a simple Arduino (Open-

source electronic prototyping platform) configuration. We used that as the reference image to 

compare our reconstructed image upon. The middle raw sensor image is what our CMOS image 

sensor captures without optic lenses. The right constructed image is the raw sensor image run 

through our MATLAB image reconstruction algorithms, Radon transform and splice theorem.  
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Figure 2: Positive image reconstruction progression is shown to test MATLAB analysis and to trust our sensors 

capturing capability of raw data images.  

The next progression for the project was to capture raw sensor images of handwritten numbers 

using the MNIST online dataset. The reconstruction of the image was done, as well as initially 

programming for our system to understand what it was seeing. Although the reconstruction of 

the image can be done successfully, getting the system to understand what the machine is 
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reconstructing will become the largest challenge in our project’s implementation.  

1.2 Deep Learning  

Deep learning is part of a broader family of machine learning methods based on learning 

representations of data. This makes machine learning and deep learning extremely similar terms 

but the subtle differences are vital when choosing to implement one or the other in a problem. 

With recent advancements in deep learning algorithms and GPU technology, we are able to solve 

problems once considered impossible in fields such as computer vision, natural language 

processing, medical imaging, and robotics. The key aspect stems from the data network the 

system runs upon. The system relies heavily on the data to be able to “learn” and generally the 

more data captured the better the results. The system learns from the data by extracting features 

and using those features as filters to progress through images, thus essentially storing details in 

the network that can be used in future iterations of image recognition. For example, if the data 

presented is a series of human heads the system will learn what a nose, eye, mouth, face shape, 

etc. mean and incorporate that as filters to distinguish between faces. Thus the system not only 

can learn features from the data, it can use that data to predict the next image it is given and 

presumably tell you not only that the image contains a human head but whose human head it is. 

Deep learning has also been known to be called deep structured learning, hierarchical 

learning or deep machine learning which applies a set of algorithms that attempt to model high-

level abstractions in data. Common applications were targeted toward computer 

vision, automatic speech recognition, natural language processing, audio recognition 

and bioinformatics in the past. My work aims to incorporate deep learning in application with 

raw data imaging for the purpose of connecting machines to the world as well as other machines 

in a far smarter approach than ever before. 
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Research in this area attempts to make better representations and create models to learn these 

representations from large-scale unlabeled data. To further understand deep learning you must 

understand the principle of a neural network. Deep learning uses neural networks, which have 

been around for a few decades; what’s changed in recent years is the availability of large labeled 

datasets and powerful GPUs. Neural networks are inherently parallel algorithms and GPUs with 

thousands of cores that combined we can take advantage of to dramatically reduce computation 

time needed for training deep learning networks. [2] There are several neural network techniques 

being used for once considered impossible feats in fields so it becomes crucial to understand 

what a neural network is and how to distinguish between them. Below is a simple representation 

of the most used neural networks in the field of image classification: 

• Artificial Neural Network (ANN) – An artificial neural network consists of an input layer 

of neurons (or nodes, units), one or two (or even three) hidden layers of neurons, and a 

final layer of output neurons. Each connection is associated with a numeric number called 

weight. It contains an activation function. The purpose of the activation function is, 

besides introducing nonlinearity into the neural network, to bind the value of the neuron 

so that the neural network is not paralyzed by divergent neurons. A common example of 

the activation function is the sigmoid (or logistic) function. Other possible activation 

functions are arc tangent and hyperbolic tangent. They have similar response to the inputs 

as the sigmoid function, but differ in the output ranges. It has been shown that a neural 

network constructed the way above can approximate any computable function to an 

arbitrary precision. Numbers given to the input neurons are independent variables and 

those returned from the output neurons are dependent variables to the function being 

approximated by the neural network. Inputs to and outputs from a neural network can be 
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binary (such as yes or no) or even symbols (green, red, ... ) when data are appropriately 

encoded.  

• Multilayer Perception (MLP) – Multilayer perceptron network (MLP), FIR neural 

network and Elman neural network were compared in four different time series prediction 

tasks. Time series include load in an electric network series, fluctuations in a far-infrared 

laser series, numerically generated series and behavior of sunspots series. FIR neural 

network was trained with temporal back propagation learning algorithm. Results show 

that the efficiency of the learning algorithm is more important factor than the network 

model used. Elman network models load in an electric network series better than MLP 

network and in other prediction tasks it performs similar to MLP network. FIR network 

performs adequately but not as good as Elman network. 

• Recursive Neural Network (RNN) – Unlike standard neural networks, recursive neural 

networks are able to process structured inputs by repeatedly applying the same neural 

network at each node of a directed acyclic graph (DAG). In the past they have only been 

used in settings where another (often symbolic) component was first used to create 

directed acyclic graphs. These DAGs were subsequently given as input to the RNN. In 

such a setting, each non-leaf node of the DAG is associated with the same neural 

network. A DAG (essentially) is a binary tree. In other words, all network replications 

share the same weights. The inputs to all these replicated feedforward networks are either 

given by using the children’s labels to look up the associated representation or by their 

previously computed representation 

• Recurrent Neural Network (RNN) – In recurrent networks, history is represented by 

neurons with recurrent connections - history length is unlimited. Also, recurrent networks 

can learn to compress whole history in low dimensional space, while feedforward 
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networks compress (project) just single word. In feedforward networks, history is 

represented by context of N − 1 words - it is limited in the same way as in N-gram 

backoff models. Recurrent networks have possibility to form short term memory, so they 

can better deal with position invariance; feedforward networks cannot do that. [27] 

• Long term-short memory (LTSM) – Long Short-Term Memory (LSTM) is a specific 

recurrent neural network (RNN) architecture that was designed to model temporal 

sequences and their long-range dependencies more accurately than conventional RNNs. 

LTSM overcomes some modeling weaknesses of RNNs, is conceptually attractive for the 

task of acoustic modeling. 

• Shallow Neural Network – In short, "shallow" neural networks is a term used to describe 

NN that usually have only one hidden layer as opposed to deep NN which have several 

hidden layers, often of various types. Multi-layered neural nets achieve better results than 

shallow ones that have the same computational power (e.g. number of neurons or 

connections). The main explanation is that the deep models are able to extract/build better 

features than shallow models and to achieve this they are using the intermediate hidden 

layers. 

• Convolutional Neural Network (CNN) – The convolutional network extracts successively 

larger features in a hierarchical set of layers. Convolutional neural networks (CNN) 

incorporate constraints and achieve some degree of shift and deformation invariance 

using three ideas: local receptive fields, shared weights, and spatial subsampling. The use 

of shared weights also reduces the number of parameters in the system aiding 

generalization. Convolutional neural networks have been successfully applied to 

character recognition [3], [5], [22]–[24]. The network consists of a set of layers each of 

which contains one or more planes. Approximately centered and normalized images enter 
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at the input layer. Each unit in a plane receives input from a small neighborhood in the 

planes of the previous layer. Each plane can be considered as a feature map which has a 

fixed feature detector that is convolved with a local window which is scanned over the 

planes in the previous layer. Multiple planes are usually used in each layer so that 

multiple features can be detected. These layers are called convolutional layers. Once a 

feature has been detected, its exact location is less important. Hence, the convolutional 

layers are typically followed by another layer which does a local averaging and 

subsampling operation. 

 

Figure 3: A typical convolutional neural network structure  

  

Figure 4: A high-level block diagram of the system we have used for the machine data handwritten numbers dataset 

we used. 

In the system, our original data sample was large and composed entirely of images that did not 

require preprocessing. From this deduction it’s confirmed that a convolutional neural net would 

be the best start to begin our deep learning. Convolutional neural networks are essential tools for 

deep learning, and are especially useful for image classification, object detection, and 
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recognition tasks, which helped our goal. CNNs are implemented as a series of interconnected 

layers. The layers are made up of repeated blocks of convolutional, rectified linear units (ReLU), 

and pooling layers. The convolutional layers convolve their input with a set of filters. These 

layers of images combined with the feature filters could theoretically determine which 

handwritten number was which. The filters were automatically learned during network training. 

The ReLU layer adds nonlinearity to the network, which enables the network to approximate the 

nonlinear mapping between image pixels and the semantic content of an image. The pooling 

layers down sample their inputs and helps consolidate local image features. With this solid basis 

we were ready to begin our projects essence.  

1.3 Statement of Purpose 

Our primary purpose was to connect machines as a system that could understand their 

surroundings. The ethics involved with machines learning and evolving as humans do were not 

taken into question. Learning and implementing a system to hopefully evolve every field 

imaginable was the only purpose of this project. With goals that came with limitless potential, 

the reality became of where to start. The background of anthropomorphic image classification 

weighed heavily on us to push ourselves. It was possible for a machine to reconstruct an image 

from a CMOS sensor data sample. And using those same algorithms with the help of a 

convolutional neural network and interconnected layers would allow for the machine not only to 

reconstruct an image internally but to also understand what it was reviewing.   

2 METHODS 

2.1 Project Overview 

Recently, it has become common to train ML algorithms to recognize objects in images by 

exposing them to vast databases of labeled images [1-4]. Spectacular gains in classification 

accuracy have been obtained and ML algorithms are now able to make complex decisions based 

upon object recognition in image and video data. These algorithms are typically educated on 



	

	 14 
	
	

conventional (what we refer to as human-centric) images. Nonanthropomorphic images are 

images that are not discernable to the human eye. There have also been significant advances in 

lensless imaging, where a sensor that does not have a lens captures information from a scene or 

object [5-7]. Such lensless cameras offer advantages of simplicity, low cost, reduced weight and 

small form factors. With our initial testing for image reconstruction finished our primary project 

begins. Our first task was to create a database of lensless images of handwritten digits. Our 

lensless camera is simply a conventional bare CMOS sensor (The Imaging Source, DFM 

22BUC03-ML). This sensor was used as our camera and provided the necessary machine data 

that a machine would produce when capturing its environment. We reduced the ambiguity in our 

case by making sure the camera focused on the handwritten number image. We use a liquid-

crystal display (LCD) to show various images of handwritten digits from 0 to 9 [8]. Sample 

images of handwritten digits were obtained from the MNIST database. The MNIST database has 

been used for image classification test since the 1990’s, and is widely used for assessing image 

classification accuracy. Examples of the original MNIST images and their corresponding lensless 

images are shown below: 

 

(a) (b) 
 

Figure 5: Figure (a) and figure (b) are the same handwritten number of “0” in this case, but performed on with a 

CMOS lens sensor and a CMOS lensless sensor. 
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The LCD is placed about 250mm away from and facing the CMOS sensor. The exposure time is 

150ms and it averages 100 frames to reduce noise. Using this procedure, a database of exactly 

70,000 images with appropriate labels was created. The digits 0-9 with approximately 7,000 

numbers of each are organized in individual folders and tagged correspondingly. This process 

took quite a bit of time so as images were being captured, implementing the machine learning 

algorithm and the CNN occurred simultaneously. The variables considered when training are 

interesting to consider. To generalize, knowing that the more data the system can include for the 

CNN typically generates better end results motivated the need for large image quantities. With 

more data also comes a higher computing time model as a result. With datasets the size of 

250,000 possible this process could take several days. And as I will explain in detail later 

encoding the images, training, and then finally testing on this relatively large data sample size is 

very time sensitive. Time was a fine line that had to be played with throughout our training. In 

our particular experiment, measuring if our training was being done properly, if the threshold for 

the amount of data was too high or too low, and what the prediction accuracy was once the 

measurements ({0,1}, {0-4}, and {0-9} lens and lensless) were all taken was the experimentation 

process. Throughout the process a trained ML algorithm was implemented on this dataset to 

ensure accuracies were within range bounds. To do this we had to generate our CNN in a fashion 

that could work relatively quickly on the data while being very precise. After completely 

finishing our data capturing and CNN/ML groundwork experimentation for accuracy began. 

Finally, our results demonstrated that the trained ML algorithm is able to classify the digits with 

accuracy as high as 99% for 2 digits on lensless CMOS sensor images. Our approach clearly 

demonstrates the potential for non-human cameras in machine-based decision- making scenarios. 

Previously, our project demonstrated that frames captured by a bare CMOS sensor could be used 

to reconstruct images that are recognizable by humans. Here, we show that such human-centric 
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reconstruction is actually not necessary for machine-based image recognition and classification. 

Specifically, the system trains a ML algorithm on a database of frames created by a lensless 

camera and demonstrates that the algorithm is capable of image classification using data directly 

from the lensless camera. A guideline of the procedure that was taken is shown below. 

PROCEDURE 

1. Capture images of the handwritten numbers using our CMOS image sensor in a controlled 
dark room environment for all three datasets (lenseless, lense, and original).  

2. Once the image sets are all organized in folders of specified number I begin training.  

• Training:  

1. Extract features from the image sets of random numbers.  

2. Properly train the CNN to behave on a variety of samples. 

3. Encode the extracted features on a different image set. 

• Testing: 

1. After the training finished on the image sets, I test the system using different size networks. 

2. After testing has occurred the plots of accuracy are made including a plot graph and confusion 
matrix.  

3. I repeat training and testing with different random image sets for both the extracting features 
subsection and the encoding subsection. 

4. Once the features and encoding sections have been determined for all three factions ([0-9], [0-
4], and [0,1]) I move on to the next database of images.  

 

2.2 Extract Training Features Using CNN 

As raw images are fairly large (307,200 pixels in each image), it is not suitable for large-scale 

training. Hence, SURF (speeded up robust features) extraction [9] and subsequent K-mean 

clustering [10] are performed to reduce data dimension. Note that we used 2000 to 3000 images 

to perform feature extraction as they provide sufficient information to approximate image 
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features that are present throughout the whole set. Anything over plateaued and kept the 

accuracy within a threshold that wasn’t worth the extra processing and computing time. By using 

bagOfFeatures, a MATLAB pre-built feature extraction algorithm our system the filtering for our 

CNN will come relatively easily. Determining if our features will effectively increase the 

prediction accuracy will be measured. One of the variables that is directly related to the accuracy 

of our system is how many features is used. This is vital to understand in order to be consistent. 

The best variation our system found in feature extraction was that more features did not serve 

better. Now, when extracting features we only looked for 100 features in all the images our 

project performed the extraction on. This proved to be more than enough and 2000-3000 images 

to pull from was definitely a large enough feature filtering mechanism. Considering that the 

system was only examining handwritten number images coupled with a controlled environment 

the number of features could be reduced. These extracted features are then piped to the 

MATLAB machine learning toolbox (also called classification learner) [11], after data is 

properly formatted for the tool, to perform the training. This training is crucial for the deep 

learning algorithm to work properly for future testing. In order to analyze the CNN our system 

will be also be forming confusion matrices and encoding plots. These will be showed more in the 

coming document sections. In brief, they provide information on the comparison results and 

when and if the encoding images are successfully compared for training. To ensure that our 

training was doing exactly what was expected/wanted with a variety of learning methods to train 

the model. Algorithms used to compare the training include: 

• Support Vector Machine (SVM) – a pattern classification algorithm recently 

developed by V. Vapnik and his team at AT&T Bell Labs. , 24 can be seen as a 

new way to train polynomial, neural network, or Radial Basis Functions 
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classifiers, based on the idea of structural risk minimization rather than empirical 

risk minimization. [1, 18, 19, 20] 

o Linear – Linear kernel, meaning dot product 

o Cubic – Cubic kernel 

o Quadratic – Quadratic kernel 

• Decision Tree – Decision tree learning is a method for approximating discrete-

valued target functions, in which the learned function is represented by a decision 

tree. Learned trees can also be re-represented as sets of if-then rules to improve 

human readability. These learning methods are among the most popular of 

inductive inference algorithms and have been successfully applied to a broad 

range of tasks from learning to diagnose medical cases to learning to assess credit 

risk of loan applicants. [12] and [18] 

• K-Nearest Neighbors (KNN) – The nearest neighbor classifiers require no 

preprocessing of the labeled sample set prior to their use. The crisp nearest-

neighbor classification rule assigns an input sample vector y, which is of 

unknown classification, to the class of its nearest neighbor [17], [23], [31]  

• Ensemble Subspace Discriminant – A classification ensemble is a predictive 

model composed of a weighted combination of multiple classification models. In 

general, combining multiple classification models increases predictive 

performance. To explore classification ensembles interactively, use 

the Classification Learner app. [16] 

• Logistic Regression – Logistic regression is named for the function used at the 

core of the method, the logistic function. The logistic function, also called the 

sigmoid function was developed by statisticians to describe properties of 
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population growth in ecology, rising quickly and maxing out at the carrying 

capacity of the environment. It’s an S-shaped curve that can take any real-valued 

number and map it into a value between 0 and 1, but never exactly at those limits. 

[15] 

All of these algorithms were implemented to see which had the best effects on our data set. 

Overall, the analysis saw that whether or not the case was lens or lensless the training was 

relatively consistent in results. Training observation saw patterns with algorithms that reoccurred 

more often then not. By taking the highest accuracy percentage every time the CNN was trained. 

To further determine our CNN was working properly, the system needed to reflect that both a 

lens database and a lensless database accuracy model was showing similar accuracy trends. To 

see the difference between our lens and lensless data the project will include three different cases 

while fluctuating the training images. Our first case {0,1}: expected to have particular outcomes 

for both the lens and lensless classifications. Our team expected relatively high results for these 

and maybe a slight difference where the lensless faltered in comparison to the lens. Our second 

case {0-4}: expected that this dataset would also yield considerably high prediction accuracies 

hovering around 85-90%. For our last case, {0-10}: expected prediction accuracies around 80-

85%. Now from our past experimentation the project had more understanding and ealistic views. 

The system goal wanted our average of the two datasets to hover around 65%. The results ensued 

that {0-9} came to prediction accuracies at lens 93% and lensless 57%. The general trend of our 

neural net showed us that the training images that were prime and not taking too much 

computing proved to be 19,000 images. Anything below this figure and the results could vary 

and anything above proved to be a threshold that cost too much time in valuable computing. 

Once trained, each model is measured for accuracy using a set number of test images as 

described below.  
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2.3 Test Filtering on New Image Sets 

Testing always began with a picked model containing the highest prediction accuracy. In most 

cases, the SVM algorithm achieved the highest accuracy. The first area of training was to 

compare lens and lensless prediction comparisons. Testing our CNN and ML on new data sets of 

handwritten numbers will be conducted on a lens dataset. This is an intermediate step to test our 

program on both lens and lensless captures. The following data results contain the bagOfFeatures 

extraction features as well as the number of encoding images used. 

LENS 

• 10 digits - bagOfFeatures, encoding images: 10800 & 19050, 6800 & 14050, 3600 & 
7800, 1600 & 3800, 500 & 600  

25% HOLDOUT: 14287, 10537, 5850, 2850, 450 

HIGHEST 94.6 SVM Quadratic bagOfFeatures features [10 20 50 100 150 200 250 300] 
encoding images [10 20 50 75 100 150 200 250 300 350 400] 

2nd HIGHEST 94.2 SVM Quadratic bagOfFeatures features [10 20 50 100 200 300] encoding 
images [10 20 50 75 100 200 250 300 400] 

3rd HIGHEST 94.3 SVM Quadratic bagOfFeatures features [10 50 100 200] encoding images 
[10 20 50 100 200 400] 

4th HIGHEST 94.8 SVM Cubic bagOfFeatures features [10 50 100] encoding images [10 20 50 
100 200] 

5th HIGHEST 82.4% Ensemble Subspace Discriminant bagOfFeatures features [50] encoding 
images [10 50] 
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Figure 6: A confusion matrix showing the training system and how it works in comparison of numbers. 

A confusion matrix is a direct analysis tool provided by the MATLAB Machine Learning 

Toolbox. It allows us to compare the CNN and ML to see if the training of images and features 

were correlated correctly. For a direct example, in Figure 6 we see that the blank spots are 

contained when numbers like 0 and 9, 1 and 8, or 4 and 6, etc. That implies that those numbers 

were not mistaken to one another during the training system. The high diagonal coordination 

shows when the system came to two numbers that are the same. The percentages in that diagonal 

stretch are averaging around 95% of correct matches. The minimal numbers across the board 

where numbers like 2 and 3, 3 and 8, and 5 and 9, etc. intersect are percentages where the system 
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confused the two numbers 1-5% of the time. The lens data set was extremely accurate but does 

not portray machine images.    

 

Figure 7: The encoding plot also shows the highest prediction accuracy on the lens dataset. 

An encoding plot is a direct analysis tool provided by the MATLAB Machine Learning Toolbox 

as well. It is a bit more complex to read. There are a few key takeaways in this plot that are vital 

to consider. The correlation of the points in the same clustered area, the dot and “X” visual tool, 

as well as the axes are crucial in understanding what the plot actually means. The encoding plot 

correlates the correct fits of the number matching that the system makes. The “X” points mean 

misses in the data where the numbers that were matched did not match to the system. Now that is 

a comparative point because the numbers may be wrong but the system may think it’s correct 

and vice versa. The more dots and the better proximity of dots demonstrate a better system of 

matching. In general, it allows us to compare the CNN and ML to see if the training of images 
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and features were correlated correctly.  

The following results go on to provide interesting information on the principles implemented. 

When it comes to the lens data set we successfully captured the principle that getting a system to 

learn on the machine raw data is much more difficult than on a general anthropomorphic image. 

In most cases, the {0-9} case is most valuable since the data is most crucial then. Creating a 

system that can distinguish between a 0 and a 1 like in the {0,1} case scenario is not impressive. 

Being able to correlate through several features and then train a CNN to test on a new larger set 

of data sets becomes the whole concept. In regards to the middle case scenario of {0-4} is also 

important to consider when trying to formulate the best testing strategy for training and testing 

samples. The {0-9} case and the {0-4} case share the same amount of feature extraction since 

this was implemented to be best in the training of the CNN and ML.  

• 5 digits –  

HIGHEST 97.6% SVM Quadratic bagOfFeatures features [10 20 50 100 150 200 250 300] 
encoding images [10 20 50 75 100 150 200 250 300 350 400] 

2nd HIGHEST 97.2 SVM Quadratic bagOfFeatures features [10 20 50 100 200 300] encoding 
images [10 20 50 75 100 200 250 300 400] 

3rd HIGHEST 97.8 SVM Cubic bagOfFeatures features [10 50 100 200] encoding images [10 20 
50 100 200 400] 

4th HIGHEST 96% SVM Quadratic bagOfFeatures features [10 50 100] encoding images [10 20 
50 100 200] 

5th HIGHEST 96.8% Ensemble Subspace Discriminant bagOfFeatures features [50] encoding 
images [10 50] 
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Figure 8: This confusion matrix shows the highest prediction accuracy on the lens dataset for {0-4} indicating the 

feature extraction is working successfully. 

The lensed {0-4} case scenario confusion matrix shows a pattern developing. Lens solutions 

clearly are not faltering to the levels of lensless models. This non-regression implies that the 

future of raw image recognition in the case scenario {0-9} will also be high. Anthropomorphic 

training is much easier with direct features to extract and less room for error amongst widely 

differing images.  
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Figure 9: This encoding plot shows the highest prediction accuracy on the lens dataset for {0-4} showing the 

correlation of successful feature extraction. 

The correlation of lensed case scenario {0-4} shows the ease at which the success is generated 

from this system. The linear progression of encoding images as well as the very few “X” marks 

on the plot indicates ease in training. The rare outliers are far off the correlation pattern and that 

indicates that the layers within the training are very often confused with previous data collection. 

Encoding was a crucial factor in determining the outcome of training. If our encoding sizes 

varied, results were extremely volatile. If you examine the encoding images in each case you’ll 

notice the trend of this matrix being the best option [10 20 50 75 100 150 200 250 300 350 400]. 

• 2 digits -  

HIGHEST 98.5% Logistic Regression bagOfFeatures features [10 20 50 100 150 200 250 300] 
encoding images [10 20 50 75 100 150 200 250 300 350 400] 

2nd HIGHEST 100% Quadratic Discriminant bagOfFeatures features [10 20 50 100 200 300] 
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encoding images [10 20 50 75 100 200 250 300 400] 

3rd HIGHEST 100% KNN Fine KNN bagOfFeatures features [10 50 100 200] encoding images 
[10 20 50 100 200 400] 

4th HIGHEST 100% SVM Linear bagOfFeatures features [10 50 100] encoding images [10 20 
50 100 200] 

5th HIGHEST 100% SVM Quadratic bagOfFeatures features [50] encoding images [10 50] 

Up until this point the training and limited testing was going extremely well. The differences in 

the lens and lensless application results were very different. Using the same principles in the 

lensed variation the system had problems with training and testing in this environment. As you 

can image the differences in machine images are extremely subtle which was a direct cause of 

poor feature extraction. Lensless accuracy will be conveyed below in much more detail. 

LENSELESS 

• 10 digits - bagOfFeatures, encoding images: 10800 & 19050, 6800 & 14050, 3600 & 
7800, 1600 & 3800, 500 & 600 

HIGHEST 57.0% SVM Quadratic bagOfFeatures features [10 20 50 100 150 200 250 300] 
encoding images [10 20 50 75 100 150 200 250 300 350 400] 

2nd HIGHEST 51.1% SVM Linear bagOfFeatures features [10 20 50 100 200 300] encoding 
images [10 20 50 75 100 200 250 300 400] 

3rd HIGHEST 55.5% SVM Linear bagOfFeatures features [10 50 100 200] encoding images [10 
20 50 100 200 400] 

4th HIGHEST 53.6 Ensemble Subspace Discriminant bagOfFeatures features [10 50 100] 
encoding images [10 20 50 100 200] 

5th HIGHEST 36.0% Tree Complex Tree bagOfFeatures features [50] encoding images [10 50] 
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Figure 8: This confusion matrix shows the {0-9} highest prediction accuracy for the lensless dataset. 

This confusion matrix shows a lot more error. The relative decrease in empty intersections shows 

the percentage of error increasing in about every case. Another trend observed in the lensless 

case was that the amount of structures giving highest accuracies varied almost every run through. 

From the expected SVM Linear to Ensemble Subspace Discriminant and Tree Complex Tree the 

structures from the CNN were unique in most cases. The accuracy obtained from these 

measurements was 57%.  
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Figure 9: This encoding plot shows the highest prediction accuracy for the lensless dataset. 

This encoding plot showed a very interesting pattern. The density in areas makes the error hard 

to see but plots of individual data showed that almost half of the training features failed. This 

drastically reduced the number of features in the neural network and subsequently reduced the 

amount of layer classifiers. With few outliers and few accurate training spots the system is 

relatively poor at feature extraction. One solution to consider is implementing a better platform 

for image capturing to ensure the images are of a certain quality particularly needed for precise 

feature extraction.  

• 5 digits –  

HIGHEST 80.6% SVM Linear bagOfFeatures features [10 20 50 100 150 200 250 300] 
encoding images [10 20 50 75 100 150 200 250 300 350 400] 

2nd HIGHEST 78.0% SVM Quadratic bagOfFeatures features [10 20 50 100 200 300] encoding 
images [10 20 50 75 100 200 250 300 400] 
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3rd HIGHEST 74.8 % SVM Linear bagOfFeatures features [10 50 100 200] encoding images 
[10 20 50 100 200 400] 

4th HIGHEST 54.4% SVM Linear bagOfFeatures features [10 20 50 100 200 300] encoding 
images [10 20 50 75 100 200 250 300 400] 

5th HIGHEST 41.9% Quadratic Discriminant bagOfFeatures features [50] encoding images [10 
50] 

 

Figure 10: This confusion matrix shows the highest prediction accuracy for the {0-4} lensless dataset. 
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Figure 11: This encoding plot shows the highest prediction accuracy for the {0-4}lensless dataset 

This lensless confusion matrix and encoding results show that even this dataset was affected. The 

pattern of feature extraction failing is not as visible in this set when compared to {0-9} but the 

accuracy decrease is narrowed only to features. No other scenario could cause such a drastic drop 

off in accuracy considering all the successive experimentation performed throughout. 

• 2 digits -  

HIGHEST 96% SVM Linear bagOfFeatures features [10 20 50 100 150 200 250 300] encoding 
images [10 20 50 75 100 150 200 250 300 350 400] 

2nd HIGHEST 98.5% SVM Cubic bagOfFeatures features [10 20 50 100 200 300] encoding 
images [10 20 50 75 100 200 250 300 400] 

3rd HIGHEST 98.5% SVM Cubic bagOfFeatures features [10 50 100 200] encoding images [10 
20 50 100 200 400] 

4th HIGHEST 97% Tree Simple bagOfFeatures features [10 50 100] encoding images [10 20 50 
100 200] 
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5th HIGHEST 56% Logistic Regression bagOfFeatures features[50] encoding images [10 50] 

3 RESULTS 

3.1 Key Accomplishments  

Template matching methods such as [24] operate by performing direct correlation of image 

segments. Template matching is only effective when the query images have the same scale, 

orientation, and illumination as the training images [24]. This type of testing is what our sytem 

implemented and our margins of error in terms of training virus testing images were conclusive 

to be extremely minimal. Our controlled environment never changed and allowed for our 

captured query images to reflect identical properties. The results for the {0,1} dataset were 

extremely similar in both cases. The lens database, which we assumed, was going to be slightly 

better than the lensless determined our programming was functioning correctly. The lens system 

was much better than our lensless, even more so than anticipated. The prediction accuracies were 

approximately 20-30% higher for lens cases when compared to lensless cases. We found that 

regardless, when only the dataset included handwritten numbers {0,1} the predication accuracy 

of our system was a highly optimistic sign of approximately 99%. Only a few outliers deterred 

our system from correctly understanding the difference between a 0 and a 1. The lens {0-4} case 

ended up giving us a prediction accuracy of 96% that was an incredible result not expected to 

occur. The {0-4} case almost measured up exactly to the {0,1} case. The lensless case was 

relatively lower but came with the average of ~80% prediction accuracy. This type of drop was 

concerning because accuracy was stumbling extremely low with an additional three numbers. 

This result was even lower than expected. It did not bode well for the {0-9} case scenario, but 

our system had hope that we could still accomplish results higher than 60-70% accuracy. This 

was an interesting note and the large difference truly began to occur one we started incorporating 

all the digits {0-9}. The ending prediction accuracy our system gave for the {0-9} case was 57%. 
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With this basis our project was submitted a paper to the OSA Imaging and Applied Optics 

Congress. Our paper passed editorial review but not the peer review stage. Unfortunately our 

paper was also adds a new and impactful result to the field of optics that requires rapid 

publication citing, “You show that lensless imaging can be combined with machine learning. 

You apply the known machine-learning method to classify the images captured by a camera 

without optics and no new method was developed. The results are only partially successful when 

more than a couple of characters are used, but you demonstrate that the technique is viable. 

However, there are questions regarding whether the evaluation employed images that were 

contained within the set used for training and whether performance is affected by changes in the 

setup (modifying the distance, tilting the screen, etc.).” With this feedback information our sytem 

had to go farther in our exploration. And the key was to incorporate deep learning with 

modifying the image’s distance and also incorporating tilting the screen. These are 

understandable conclusions that directly assume this technology could be further applied to a real 

world application where images are not always perfectly coordinated. Our machine learning 

results with feature and encoding experimentation are given below: 

LENS 

• 10 digits - bagOfFeatures, encoding images: 10800 & 19050, 6800 & 14050, 3600 & 
7800, 1600 & 3800, 500 & 600  

HIGHEST 94.6 SVM Quadratic bagOfFeatures features [10 20 50 100 150 200 250 300] 
encoding images [10 20 50 75 100 150 200 250 300 350 400] 

• 5 digits –  

HIGHEST 97.6% SVM Quadratic bagOfFeatures features [10 20 50 100 150 200 250 300] 
encoding images [10 20 50 75 100 150 200 250 300 350 400] 

• 2 digits -  

HIGHEST 98.5% Logistic Regression bagOfFeatures features [10 20 50 100 150 200 250 300] 
encoding images [10 20 50 75 100 150 200 250 300 350 400] 
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Figure 12: This plot shows the overall success of a lens cases {0,1}, {0-4}, and {0-9} dataset . 

This final lens graph shows the three cases we experimented on, their individual accuracies along 

the variance of # of training images, with a constant feature extraction number. Lensed camera 

image recognition is not the primary component of this project but used as a guideline for testing 

the project’s progression. 

LENSELESS 

• 10 digits - bagOfFeatures, encoding images: 10800 & 19050, 6800 & 14050, 3600 & 
7800, 1600 & 3800, 500 & 600 

HIGHEST 57.0% SVM Quadratic bagOfFeatures features [10 20 50 100 150 200 250 300] 
encoding images [10 20 50 75 100 150 200 250 300 350 400] 

• 5 digits -  

HIGHEST 80.6% SVM Linear bagOfFeatures features [10 20 50 100 150 200 250 300] 
encoding images [10 20 50 75 100 150 200 250 300 350 400] 

• 2 digits -  

HIGHEST 96% SVM Linear bagOfFeatures features [10 20 50 100 150 200 250 300] encoding 
images [10 20 50 75 100 150 200 250 300 350 400] 
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Figure 13: This plot shows the overall prediction accuracy of a lensless dataset in all three cases {0,1}, {0-4}, and 

{0-9}. 

This final lensless graph shows the three cases we experimented on, their individual accuracies 

along the variance of # of training images, with a constant feature extraction number. This was 

our final ML application. To generate higher prediction accuracies and appeal to the Optica 

journal the project stemmed into deep learning, modifying the distance, and tilting the screen. 

These experiments have been established and are being worked on currently. Applying the ML 

model established for the handwritten numbers can be relayed for images scattered through a 

angle tilt or of a glass projection. These results depict that the ML system created can depict 

images correctly 57% of the time if the images. These are impressive readings for a process that 

has never been implemented previously. 

3.2 Key Frustrations 

Convolutional networks have traditionally been used on raw images without any preprocessing. 

Without the deep learning preprocessing, the resulting convolutional networks are larger, more 
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computationally intensive, and have not performed as well in our experiments. The frustration 

comes from a lack of time. The concept of deep memorization comes into play when images are 

too large. The images our system captured from our experiment caused the implementation to 

memorize the handwritten numbers and did no learning. The implementation seemingly ran 

perfectly and gave results in the high 90’s. Upon speaking to experts in the field and analyzing 

the timing it was concluded that the system was indeed only memorizing. No learning was taking 

place in the handwritten dataset networks. This was seen in the drastic reduction in computing 

time to train and analyze images. Originally training and testing data took several hours to 

complete for the largest case {0-9}. In memorization the system only took minutes. What does it 

mean to ’memorize’ a training set? In the context of learning, memorization means a failure to 

generalize. This brings us to another definition of memorization: not learning patterns from data. 

Phrases like “brute-force memorization” [34] connote fitting a dataset without capitalizing on 

any patterns in the data. In contrast, we believe that DNNs first learn and then refine simple 

patterns, which are shared across examples, in order to quickly drive down training loss. 

4 DISCUSSION 

4.1 Future Direction 

With my last semester at the University of Utah coming to a close the duration of this project 

must be handed off. The direction of this project has limitless possibilities and its application 

beyond handwritten numbers is yet to be seen. To generate higher prediction accuracies and 

appeal to the Optica journal the project stemmed into deep learning, modifying the distance, and 

tilting the screen. I predict that accuracies could improve to about {0,1} at ~99%, {0-4} at ~90%, 

and {0-9} at ~85%% with a successful deep learning implementation. This would require 

recapturing the data images with a different CMOS sensor in order to produce smaller images. 

This would negate the possible affects of deep memorization. Deep memorization has its purpose 

but considering that our system would never encounter the same image twice the memorization 
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occurring would not help our system at all. When testing the distance and screen tilt I believe 

that the project will have difficulty calibrating images while continuing to extract features at a 

high success rate. This screen tilt experimentation is partially occurring with scattered 

handwritten images being projected through glass. The image is scattered and tilted at a 90-

degree angle. Simply switching the database image sets in the programming would allow the 

machine system already implemented to run on the new data. Varying the distances variable was 

not attempted at all in our iteration of our experiment. Our approach was based off the best 

resolution and calibration practice for our images. Once the lens data image is as 

anthropomorphic as possible we took the CMOS sensor machine image. This phase of the 

project has not ended. Its completion is ongoing and Dr. Rajesh Menon will continue to help 

work on the implementation of deep learning and tilting image ratios atop the basis of machine 

learning algorithms, CNN training, and testing processes already established.  

4.2 Summary and Conclusion  

In conclusion, we demonstrate that machine learning can be effectively applied to classify 

lensless images. Such non-human image-based decision-making could lead to significant 

improvements in the ability of autonomous agents to navigate and make sense of the external 

world. Further testing and experimentation is definitely required to pus the boundaries of this 

project. With future work being done in modifying the CMOS distances and/or tilting the LCD 

screen interesting results will come about. The process is no longer the experimentation. The 

theory has been applied and proved in real life cases. Only furthering these experiments with 

CMOS distance changes and screen tilt will allow for extremely real life scenarios. With these 

enhancements made I’m confident that the Optica journal will reconsider our application for peer 

review.  This document will serve as Stefan Kapetanovic’s Honors Thesis at the University of 

Utah and will reflect upon the process and result of his project guided by Dr. Rajesh Menon. Our 

general process is shown in Figure 14. 
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Figure 14: Overview schematic of our experiment. Handwritten digits are displayed on an LCD, and a bare CMOS 

sensor captures lensless images. Approximately 70,000 training images were created.  

 

Figure 15: Best classification accuracy as a function of number of training images used. 

We implemented a system that can accurately predict handwritten numbers from a raw CMOS 

machine image. Current forms of deep learning do not target non-anthropomorphic camera 

images that our sensors will be producing. Our image sizes held back the project when the deep 

learning stage occurred. The numerous layers within our application would use the extensive 

data to deep memorize rather than deep learn. The concept of the project is that an implemented 

machine system can interpret our CMOS camera data thus having the ability to make out what it 
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captures. To develop the system creating a dataset, generate a trained convolutional neural 

network (CNN), and test our system on live images becomes the experimentation process. Our 

results included {0,1} at 99% accuracy, {0-4} at 80.6% accuracy, and {0-9} at 57.0% prediction 

accuracies. In theory, from this we will have composed a system that can function on "non-

human cameras as the eyes for the internet of things” for every machine system with an image-

capturing sensor.  Our major findings and system results for the lensless case are given in the 

graph below: 

5 APPENDICES 

5.1 MATLAB Configurations  

The MNIST database of handwritten digits, available from this page, has a training set of 60,000 

examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. 

The digits have been size-normalized and centered in a fixed-size image. 

Deep Learning Classifcation: https://www.mathworks.com/help/vision/examples/image-

category-classification-using-deep-learning.html?requestedDomain=www.mathworks.com 

Deep Learning: https://www.mathworks.com/help/vision/deep-learning.html 

Pattern Recognition: https://www.mathworks.com/help/nnet/pattern-recognition-and-

classification.html 

BagofFeatures algorithm: https://www.mathworks.com/help/vision/ref/bagoffeatures-

class.html 

Classification Ensembles: https://www.mathworks.com/help/stats/classification-ensembles.html 

5.2. MNIST Dataset 

The MNIST database of handwritten digits, available from this page, has a training set of 60,000 

examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. 

The digits have been size-normalized and centered in a fixed-size image. It is a good database for 
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people who want to try learning techniques and pattern recognition methods on real-world data 

while spending minimal efforts on preprocessing and formatting. 

Main MNIST Webpage: http://yann.lecun.com/exdb/mnist/ 

Four files are available on this site: 
• train-images-idx3-ubyte.gz:  training set images (9912422 bytes)  
• train-labels-idx1-ubyte.gz:  training set labels (28881 bytes)  
• t10k-images-idx3-ubyte.gz:   test set images (1648877 bytes)  
• t10k-labels-idx1-ubyte.gz:   test set labels (4542 bytes) 
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